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Abstract. The theoretical motivations that led Tullio Regge to investi-
gate the analytical properties of the scattering amplitude of the collision 
process between two particles in terms of complex energy and complex 
angular momentum are briefly reviewed and set in the context of the 
S-matrix theory that was developed in the late Fifties and early Sixties 
of the last century, in an attempt to unravel the properties of the strong 
interaction. 
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Riassunto. Le motivazioni teoriche che hanno indotto Tullio Regge a 
indagare le proprietà analitiche dell’ampiezza d’urto del processo di col-
lisione tra due particelle in termini di energia complessa e di momento 
angolare complesso sono brevemente esaminate e inserite nel contesto 
della teoria della matrice S sviluppata alla fine degli anni Cinquanta e 
l’inizio degli anni Sessanta del secolo scorso, nel tentativo di determinare 
le proprietà dell’interazione forte.
Parole chiave: Particelle, Tullio Regge.

1. Introduction

it will soon be sixty years since Tullio Regge started working on the analyti-
cal properties of the scattering amplitude of the collision process between two 
particles [1]. This line of research led him, in 1959, to consider the angular 
momentum as a complex variable, and consequently to derive those singu-
larities of the scattering amplitude that became universally known as Regge 
poles [2]. That analysis was further pursued and extended in Ref. 3, where, in 
particular, the link between non-relativistic potential scattering and the relati-
vistic formulation provided by the Mandelstam representation [4] was made 
possible. 
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after such a long span of time, it may be interesting to look back at the scien-
tific path followed by Regge: its genesis and development to investigate the 
properties of the scattering amplitude through its singularities in the complex 
plane of the angular momentum. This is what is briefly done in the present note, 
by setting Regge’s work in the wide and rich research activity developed by the 
scientific community in the ’50 and ’60 of the last century to unravel the proper-
ties of the strong interaction. Here we skip many complicated technicalities, and 
rather prefer to indulge in some pedagogical and historical aspects.  

The present review is organized as follows. in the second and third sec-
tions, we recall the role played by the Theory of the s-Matrix in obtaining 
dispersion relations in strong-interaction processes. in sect. 4 we outline the 
approach adopted by Regge to obtain the analytic properties of the elastic 
scattering amplitude in potential scattering, together with a short sketch on the 
phenomenological consequences of Regge poles. conclusions are presented 
in sect. 5. The appendix is devoted to a short review of the sommerfeld-
Watson transformation, a crucial ingredient of Regge’s approach. 

The present note is dedicated to Tullio Regge, whose physical insight and 
remarkable mathematical skill were so much enlightening for those of us who 
had the privilege of working with him.

2. The Scattering Matrix

a standard way of studying the properties of elementary particles and of 
their interactions consists in analyzing the features of the various processes 
occurring when a number of particles (constituting the so-called initial state α) 
collide together and produce a set of particles in a generic final state β.

Let us denote by S(α,β) the complex function that gives the transition am-
plitude for the process α  →  β, and by P(α,β) the corresponding transition 
probability, P(α,β)≡|S(α,β)|2. Summing over all possible final states and nor-
malizing the total probability to the unity one has the constraint 

(1)

The matrix whose elements are S(α,β) is called the scattering matrix or 
simply the s-matrix, and Eq. (1), together with the further conditions 

 (2)

represents its unitarity properties. 
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Any amplitude S(α,β) can be worked out completely when the underlying 
interaction responsible for the process is described by a definite Hamiltonian 
which allows for a convergent perturbative expansion of S(α,β) in terms 
of powers of the relevant coupling constant. This is the case of Quantum 
Electrodynamics, i.e. the theory which provides a quantum mechanical tre-
atment of the electromagnetic interaction occurring between the photon and 
the matter spinor fields (leptons and quarks). In QED the perturbative ex-
pansion is in terms of powers of the electric charge e, and its convergence is 
guaranteed by the fact that   e 2/2hc =~ 1/137 (h and c denote Planck’s constant 
and the speed of light, respectively).    

in the late Fifties the treatment of the strong interaction was still in trou-
bled waters. in fact, one realized that if the nucleon-nucleon interaction was 
described à la Yukawa, i.e. by the exchange of a pion, with a pion-nucleon 
coupling constant g, one obtained numerically  e 2/2hc =~ 15, a value inadequa-
te for a perturbative expansion of the transition amplitudes. 

Due to these difficulties, for the strong interaction one then resorted to a 
completely different approach, and developed what became denoted as the 
Theory of the s-matrix [5]. 

3. The Theory of the S-matrix

The idea was to analyze the s-matrix starting from its fundamental pro-
perties, i.e. unitarity, analyticity, crossing symmetry; each one of these being 
dictated by a specific physical principle.

The property of unitarity was already discussed above, and is provided by 
Eqs. (1-2). 

analyticity and crossing symmetry deserve special attention, and are he-
reafter discussed in some details. 

3.1 Analyticity

The principle of causality states that any event occurring in a physical sy-
stem at time t can only influence the future of the system, with no effect on the 
behavior of the system for times earlier than t. 

Most remarkably, the causality principle determines the analytical pro-
perties of the s-matrix elements in terms of the energy. This link between 
causality and analyticity can be seen in a variety of ways. To give an illustra-
tion of its physical basis we borrow from Ref. 8 the simple example provided 
by the diffusion of light by a scatterer. 
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in case of an incident monochromatic wave propagating along the z-axis, 
at large distance from the scatterer, the full wave function would be (disregar-
ding the photon spin)

 (3)

where ω is the wave number and f(ω,cos θ) is the scattering amplitude. 
However, to discuss the role of the causality principle, it is convenient to 
rewrite the previous asymptotic behavior in terms of wave packets (the inci-
dent wave plane is replaced by a δ-function):

    (4)

Now, by restraining to the case of forward scattering, i.e. cos ϴ = 1 (r = z), 
and by imposing that the scattered packet does not leave the scatterer before 
the arrival of the incoming packet, one finds that 

    (5)

where f(ω) ≡ f(ω,cos ϴ=1). Hence the forward scattering amplitude is the 
Fourier transform of a function f ’ (τ) vanishing for τ < 0, i.e. 

    (6)

Then it turns out that f(ω) can be extended analytically in the upper half of 
the complex ω-plane.

It is worthwhile to recall that in quantum field theory the analytic properties 
of the scattering amplitude have their origin in the vanishing of the commu-
tator of two field observables taken at points with a space-like separation [9].  

3.2 Dispersion relations

The analyticity property of the amplitude f(ω) allows the derivation of an 
important relation between the real part and the imaginary part of f(ω), the 
so-called dispersion relation, which in turn provides the connection between 
theory and measurable quantities. 

This dispersion relation follows from the application of the cauchy inte-
gral formula to the function f(ω)
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what is commonly known as a dispersion relation.
In some physical applications it turns out that, for large |ω|, f (ω) does not 

have the asymptotic behavior required above. in these cases one can never-
theless derive a dispersion relation by applying the previous procedure to the 
function f (ω) divided by a convenient power of the variable ω. For instance, 
rewriting Eq. (7) for the function  f (ω)/ω and assuming that  f (-ω) = f *(ω) 
one obtains

                                                                                                         (10)

This relation has a glorious antecedent in the dispersion relation obtained 
independently by Kramers and Kronig [10] in terms of the real and the imagi-
nary parts of the index of refraction [11].  

The important role of the dispersion relation (10) emerges when one fur-
ther considers that im f (ω) is connected to the total scattering cross section 
through the optical theorem, derivable from the unitarity condition (see for 
instance Ref. 7),  
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scattering amplitude have their origin in the vanishing of the commutator of two field 
observables taken at points with a space-like separation [9].   

 
 
                                                       3.2 Dispersion relations 

 
     The analyticity property of the amplitude f(ω) allows the derivation of an important 
relation between the real part and the imaginary part of f(ω), the so-called dispersion relation, 
which in turn provides the connection between theory and measurable quantities.  
    This dispersion relation follows from the application of the Cauchy integral formula to the 
function f(ω) 
 
                                                                                                                                                     
(7) 
 
where P denotes the principal value and the contour Γ consists of a semicircle of radius R in 
the upper half plane of ω and centered in the origin, and a segment (-R,+R) including the 
value ω along the real axis (the contour Γ is taken  counterclockwise). Provided that f(ω) 
vanishes at infinity faster than 1/|ω|, Eq. (7) may be rewritten as  

 
                                                                                                                                                           
(8) 

 
or under the form of a relation between the real and the imaginary parts of f(ω) 

 
                                                                                                                                           
(9) 

 
what is commonly known as a dispersion relation. 
      In some physical applications it turns out that, for large |ω|, f(ω) does not have the 
asymptotic behavior required above. In these cases one can nevertheless derive a dispersion 
relation by applying the previous procedure to the function f(ω) divided by a convenient 
power of the variable ω. For instance, rewriting Eq.(7) for the function  f(ω)/ω and assuming 
that  f(-ω) = f*(ω) one obtains 

 
                                                                                                                                                          
(10) 
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  (12)

Then the complex function f (ω) can be fully reconstructed, once the total 
scattering cross section is measured.    

3.3 Crossing symmetry

The postulate of crossing symmetry states that a process containing a 
particle with four-momentum pμ in the initial (final) state is described by a 
scattering matrix element equal to the scattering matrix element of the process 
where the given particle is replaced by its antiparticle with four-momentum - 
pμ in the final (initial) state. 

Let us, for instance, take a generic process involving 4 particles, repre-
sented by the graph of Fig. 1 and define the covariant variables s = (pa + pb)2,  
t = (pa – pd)2, u = (pa – pc)2. 

1 

 

 
                                                                                                                                          
 

                                                                                                                                          
 

 

. )(
4

)(Im ωσ
π
ωω tot

c
f =

. 
)(

)(

2
)(Re

222

2

ωω
ωσω

π
ωω

−′
′′= 

+∞

∞−

totdP
c

f

1 
 

                                    
Fig. 1 

 

 
To this graph corresponds a unique S-matrix element which describes the 

processes:   
 
 
 
 
 
 
Obviously, these processes involve different regions of the parameter 

space where the variables s,t,u take the physical values for the relevant 
processes. These invariant variables are linked by the relation  

channel-u            d  b  c  a

channel -  t           c  b  d  a

channel-s            d  c  b  a

+→+

+→+
+→+
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2 
 

 
 

where the mi’s are the masses of the interacting particles. 
 
 

3.4 Dispersion relations for strong-interaction processes. Mandelstam 

representation 

 
The paper by Gell-Mann, Goldberger, and Thirring, mentioned above [9], 

was crucial in outlining the role of causality in the analytic properties of the 
S-matrix in quantum field theory. This prompted much research activity in 
the derivation of dispersion relations in strong-interaction processes. 
Pioneering works in this directions are those of Ref. 12 where dispersion 
relations for pion-nucleon scattering in the forward direction were first 
obtained.  

Analytic properties of the scattering amplitude in energy at a fixed value 
of the momentum transfer, and the ensuing dispersion relations, were 
derived by N. N. Khuri [13] in a non-relativistic approach. The procedure 
consisted in the application of the Fredholm theory to the scattering integral 
equation.  

A remarkable approach was taken by S. Mandelstam [4], who initiated 
the investigation of physical processes in more than a single complex 
variable. In particular, by considering the four-line process of Fig.1 he 
considered the analytic properties of the generic amplitude as a function of 
two independent variable, say s and t. In case of the scattering a + b  c + d, 
these variables would stand for the squared total center-of-mass energy and 
the (negative) square of the momentum transverse, respectively.  
Mandelstam then put forward the conjecture that the two-to-two amplitude 
can be written as a representation in terms of double integrals, giving also 
some recipes for the locations of possible singularities. This opened a 
competition among various scholars to prove the Mandelstam conjecture.   

 
 

4. Analytic properties in potential scattering: Regge’s approach  
 

The aim of Regge’s line of research, initiated in Ref. 2 and continued in 
Ref. 3, was to check the analytic properties implicit in the Mandelstam’s 
conjecture. Regge’s approach was carried out in the context of non-
relativistic potential scattering, in the case of a two-body elastic collision. 

2
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3 
 

The crucial point of his investigations was the usual partial-wave expansion of 
the scattering amplitude f(k,cos θ) in terms of the phase-shift δ(l,k) [14-15]  

 
                                                                                                               (13) 
 

that he transformed into the expression  
 

 
 
                                                                                                                (14) 
 
 

by applying to the series of Eq. (13) the Sommerfeld-Watson procedure 
(reviewed briefly in the Appendix of the present paper). Regge’s winning 
idea of applying the Sommerfeld-Watson procedure to the partial-wave 
expansion of Eq. (13) led him naturally to the introduction of a complex 
angular momentum, in exactly the same way as,  in  Sommerfeld’s 
derivation, the series index n is replaced by the complex variable √ in going 
from Eq. (A1) to Eq. (A3) of the Appendix. In Eq. (14) λ ≡ l + 1/2 and Sn 
stands for the residue of exp[2iδ(λ,k) – 1] at the pole at λn = ln +1/2. 

It is worth noticing that, notwithstanding the formal similarities, the use 
of the Sommerfeld-Watson transformation in Refs.[26-29] and in Regge’s 
procedure served quite different purposes. In the former works the aim was 
to convert a series of slow convergence into one of rapid convergence for the 
practical need of a fast numerical calculation, whereas in Regge’s case the 
Sommerfeld-Watson transformation was employed to derive analytical 
properties for the function originally defined by a series in Eq. (13).   

Regge’s approach required then a detailed analysis of the analytic 
properties of the phase-shift δ(λ,k) as a function of the two complex variables 
(angular momentum λ and wave number k), necessary to validate the 
transformation of Eq. (13) into Eq. (14), and subsequently to derive, by use 
of Eq. (14), the analytic properties of the scattering amplitude in terms of the 
two variables: k, cos θ, or, alternatively, s and t (we recall that the wave 
number k and the centre-of-mass scattering angle θ are related to the energy 
E and to the Mandelstam variables by the relations: k2 = E = s, -t = 2E(1 – 
cos θ)). The full derivation of these properties is very complicated and 
required the extraordinary mathematical skill of Tullio Regge.  

To summarize the main steps and results of the procedure we follow Ref. 3, 
to which we refer for all relevant details. 
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Given the partial wave Schrödinger equation written in the centre-of-
mass system (natural units are adopted: ħ = c = 2μ = 1, where μ is the 
reduced mass of the two-body system) 

 
 

                                                                                                            (15) 
 

it is convenient to define two classes of solutions, identified by the behavior 
that these solutions have either in the origin or at infinity: a) solution φ(λ,k,r) 
that in the origin behaves like φ(λ,k,r)  ≈ r λ + ½, b) solution f(λ,k,r) that at 
infinity behaves like  

f(λ,k,r) ≈ exp[-ikr]. These functions are given explicitly 
in terms of integral equations in Ref.  3. The potential is assumed to be given 
by a Yukawian representation [16] 

 
                                                                                                             (16) 

 
An important role is then played by the so-called Jost function f(λ,k) 

defined as the Wronskian of the two previous solutions f(λ,k) ≡ W[f(λ,k,r), 
φ(λ,k,r)], since the exponential of the phase-shift appearing in  Eq. (14) can 
be written as 

 
                                                                                                              (17) 

 
The detailed analysis of the analytic properties of the solutions φ(λ,k,r)  

and f(λ,k,r)  leads  to the conclusion the Jost function f(λ,k) is analytic in the 
topological product of the whole k-plane cut along the upper imaginary axis 
with the half plane Re λ >0 and that the poles of the function S(λ,k) are 
located in the regions: Re k > 0, Im λ > 0; Re k < 0, Im λ < 0 [17].  

These properties, together with the asymptotic behaviors of S(λ,k) 
(derived by an application of the Wentzel-Kramers-Brillouin  method) and 
of Pλ – ½(-cosθ) for large λ, prove that for any complex value of cos(θ)  the 
integral in Eq. (14) is convergent and that, consequently,  f(k,cos θ) is 
analytic in the cos θ plane with the exception of the cut  cos θ real > 1. This 
enlarges significantly the region known as the small Lehmann ellipse [18], a 
domain which was derived from the expression (13) without use of the 
Sommerfeld-Watson transform.  

One important point concerns the behavior of the scattering amplitude for 
large values of cos θ (or large t). In this regime the integral in Eq. (14) 
vanishes and f(s,t) is asymptotically given by the sum over the poles. Since 
at large t  
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                          Pλ – ½(-cosθ)  ≈ (cosθ)
λ – ½

                                             (18) 
we obtain 

                               f(s,t) ≈ C(s) tα(s)              (for large t),                     (19) 
 

where both C(s) and α(s) are complex functions; α(s) is the ln(s) with the 
largest real part. This derivation is justified in the case of a finite number of 
poles. As pointed out in Ref.  [19], in the case of occurrence of infinitely 
many poles, one has to investigate whether the sum over their residues 
converges at all. 

We notice the remarkable property that links the location of the pole of 
S(λ,k) having the rightest position in the λ complex plane to the asymptotic 
behavior of the scattering amplitude at large t.  

By use of Eq. (14) it is also possible to prove that, for fixed momentum 
transfer, f(k,cos θ) is holomorphic in the half plane Im k > 0 with the exception 
of simple poles corresponding to bound states, when k is imaginary.   

It then follows that Regge’s approach actually proves that in a non-
relativistic context f(s,t) satisfies the analytic properties assumed by 
Mandelstam in his double dispersion relations [4].  

Actually, from the link between poles and asymptotic behavior of the 
scattering amplitude an extremely interesting property emerges if one applies 
crossing symmetry in such a way that the physical roles of s and t are 
exchanged. As a matter of fact, in this instance it turns out that a pole in the t 
channel, with a partial wave function  

 
                                 S(l,t) = C(t)/(l – α(t)),                                         (20) 

 
generates the asymptotic behavior  

 
                               f(s,t) ≈ C(t) sα(t)            (for large s)                        (21) 

 
 

4.1 Phenomenological applications of Regge poles 

 
The paper of Ref. 3 was finished by the middle of September 1961 and its 

preprints sent off to the major scientific institutions and individuals.  In the 
introduction of Ref. 3 Regge emphasized the most important points where 
the previous analysis of Ref. 2 had been significantly expanded and 
improved. These results, also presented by Tullio Regge in anteprima in the 
summer of 1961 at an International School in Hercegnovi (Yugoslavia), 
raised immediately great interest in the community – with a sudden outburst 
of an extraordinary number of papers elaborating on the implications of the 
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S-matrix singularities in the complex angular momentum plane: the “fever” 

of Regge poles phenomenology exploded [20].Seminal papers on this matter 
were written by Geoffrey F. Chew and Steven C. Frautschi at Berkeley 
(USA) with Stanley Mandelstam [21] at Birmingham (UK), and by Vladimir 
N. Gribov and Isaak Ya. Pomeranchuk in Soviet Union [22]. 

A crucial point in the phenomenology based on Regge poles is that the 
location of the singularities of f(s,t) (discussed at the end of the previous 
section) caused by poles in the t channel have a location in the λ complex 
plane that varies in terms of t. Interpreting the angular momentum l as the 
intrinsic angular momentum, a Regge singularity establishes a relation, j = 
α(t=m2), between spin and mass of the exchanged particle. 

One then obtains a physical description of the process which looks like a 
generalization of the old Yukawa conjecture that interpreted the interaction 
between two nucleons as the exchange of a pion in the transverse momentum.  

Regge’s theory was extensively used to classify, in homogeneous Regge 
families, particles and resonances which originally appeared somewhat 
uncorrelated. This gave for instance origin to Regge trajectories, which are 
lines plotting the function j = α(t) in a diagram of the variable j as a function 
of t=m2. Refs. 23-25 are among the many books discussing various 
phenomenological aspects related to Regge poles.     

 
 

5. Conclusions 

 
Regge-poles phenomenology developed with great success for a few 

years as a branch of particle physics research, in part aside from the original 
theoretical avenue that analyzed mathematically the S-matrix analytic 
properties. This phenomenology, although still employed nowadays in some 
applications, underwent a natural decline, when in the early Seventies 
Quantum Chromo Dynamics made its appearance as the fundamental theory 
for the strong-interaction force. With the advent of QCD, the strong 
interaction could be unified with weak and electromagnetic interactions in 
force of the fundamental principle of gauge invariance.  

Independently of the historical fate of Regge-poles phenomenology, 
Regge’s approach to the analysis of potential scattering in terms of complex 
angular momentum remains as a formidable breakthrough to establish 
crucial properties of the scattering amplitude, i.e. its analytic properties and 
asymptotic behaviors. Furthermore, Regge’s approach had a quite 
remarkable role in putting the seeds of further developments: the Veneziano 
model and the ensuing dual models. 
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APPENDIX 

 

 

The Sommerfeld-Watson transformation 
 
 
 
This appendix is devoted to a brief summary of a physical-mathematical 

procedure that was employed by many authors [26-29] to solve the classical 
problem of transmission of Hertzian waves along Earth’s surface. To solve 
this physical problem one is essentially led to discuss a mathematical 
quantity given by a series of the form 

 
                                                                                                        (A1)  

 
The main difficulty found by the authors of Refs.[26-29], who wanted to 

obtain an accurate numerical evaluation of the function g(x,cos θ), consisted 
in the fact that the convergence of the series in Eq. (A1) is very poor, due to 
the nature of the function gn(x) (not given explicitly here). To overcome this 
difficulty, they applied the trick of replacing n by a complex variable √ and 
by rewriting the series in the form of a complex integral defined along an 
appropriate contour A. By conveniently modifying the contour A in the 
complex plane of the variable √ and by applying the theory of residues, one 
finally obtained an expression of the function g(x,cos θ) as a new series 
whose fast convergence allowed a very accurate evaluation of  g(x,cos θ) in 
terms of just its first few terms (at variance with the series of Eq. (A1) which 
required the evaluation of thousands of terms). 

Hereby we sketch the main steps of the involved mathematical procedure, 
following the derivation illustrated by Arnold Sommerfeld in one of his 
famous textbooks [29], which reflected the renowned lectures he gave in 
Munich.  

The first step consists in promoting the summation index n to become a 
complex variable √ and in converting the series of Eq. (A1) into an integral 
over the contour A to be taken clockwise around the points √ = 0,1,2,3,… 
(see Fig. 2). The result is  

 
                                                                                                              (A2) 
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2 
 

as can be proved by applying the residue theorem to the integral along the 
loop A and by considering that the integrand has poles of the first order 
when √=n with a residue (-1)n/π. 

0=ν 1 32

A

A

B

C

C

B

Re λ

Im λ

 
Fig. 2 

 
 
The second step consists in the deformation of the contour A into the 

vertical path C and the path B connecting paths A and C at infinity.  
In the case considered by Sommerfeld the function g√(x) is regular in the 

√ right half-plane except for poles in the upper right quadrant. Then the 
original integral of Eq. (A2) can be rewritten as 

 
 
 

                                                                                                                             
(A3) 

 
once the vanishing of the contribution along the path B is taken into account 
(as actually proved in Ref. 29). Also, in the integral the variable λ = √ + ½ 
has been introduced. This change of variable makes the discussion of the 
integral easier, due to the symmetry property   

                                                                                                      (A4) 
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In the physical case treated in Ref. 29 the integral is proved to vanish; 
then, the function g(x,cosθ), originally given by the series of Eq. (A1), can 
be calculated in terms of the series of Eq. (A3) whose convergence turns out 
to be very rapid.  
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